Imaging Collagen with X-rays

September 21, 2009

Coherent X-ray Diffraction patterns of collagen in soft tissues have been measured for the first time by Dr Felisa Berenguer (London Centre for Nanotechnology) with her colleagues. This development opens doors to better understanding of living tissues like skin and bones, as well as the bio-mineralization processes which turn flexible collagen into semi-flexible cartilage and eventually into rigid bones. In a distant future, the understanding of the collagen structure will eventually lead to cures for of bone diseases, notably osteoporosis, or assist ongoing efforts to develop artificial skin.

Dr Berenguer is part of Prof Ian Robinson’s group in the London Centre for Nanotechnology. This group is developing methods of using the coherence properties of these X-rays for imaging materials on the nanoscale. They use new synchrotron X-ray sources with extremely high brightness such as the Diamond Light Source on the Harwell campus near Oxford. While new light lines at the Diamond Light Source are still under construction, the London Centre Nanotechnology operates one of the experimental out-stations of the Advanced Photon Source (APS), an X-ray synchrotron in Chicago, USA. The group is focusing its efforts on X-rays because this type of light has small wavelengths and is strongly penetrating into material. There is thus an opportunity for imaging physical structures in three dimensions with resolution well beyond that of the visible light microscope. The group is also developing phase-contrast methods that are sensitive to nanoscale strains, or the detailed packing arrangement of molecules in biological tissues.

Original publication:
Berenguer de la Cuesta F, Wenger MP, Bean RJ, Bozec L, Horton MA, Robinson IK. : Coherent X-ray diffraction from collagenous soft tissues. Proc Natl Acad Sci U S A. 2009 Aug 24. [Epub ahead of print]

http://www.london-nano.com

Diffraction pattern of collagen obtain by Dr Berenguer and al during the scope of this research. Source: London Centre for Nanotechnology

Diffraction pattern of collagen obtain by Dr Berenguer and al during the scope of this research. Source: London Centre for Nanotechnology

Advertisements