New Bioimaging Method for Observing HPCs

August 13, 2009

timm_schroeder_hpcs

The research team led by Dr. Timm Schroeder, stem cell researcher at Helmholtz Center Munich, Germany has developed a new bioimaging method for observing the differentiation of hematopoietic progenitor cells (HPC) at the single-cell level. With this method the researchers were able to prove for the first time that not only cell-intrinsic mechanisms, but also external environmental factors such as growth factors can control HPC lineage choice directly. The findings, published in Science, provide an essential building block for understanding the molecular mechanisms of hematopoiesis and are an important prerequisite for optimizing therapeutic stem cell applications.

With the new bioimaging techniques developed by Dr. Schroeder’s team, progenitor cells could be observed for a longer period and on the single-cell level. Depending on the kind of cytokines present, after a few days the HPC cultures contained only one cell type. The question remained unanswered whether this was a consequence of direct cytokine regulation or merely the result of sorting out “erroneously differentiated” cells by cell death. Using the new bioimaging techniques for continuous single-cell observation, Dr. Michael Rieger and students in Dr. Schroeder’s research group showed for the first time that no cell death could be detected during the entire cell differentiation process. This proves unambiguously that HPC lineage choices can be steered by external environmental factors such as in this case by cytokines. The hematopoietic progenitor cells are “instructed” by cytokines.
www.helmholtz-muenchen.de

Original publication:
Rieger MA, Hoppe PS, Smejkal BM, Eitelhuber AC & Schroeder T (2009): Hematopoietic cytokines can instruct lineage choice. Science 325:217-218


European Biophysics Congress

März 24, 2009

The 7th European Biophysics Congress will take place in Genoa, Italy from July 11-15, 2009. The congress is organized on behalf of the Italian Society of Pure and Applied Biophysics (SIBPA) and the European Biophysics Societies Association (EBSA). It address to representatives from academic and industrial institutions.

Conference topics include:

1. Single molecule biophysics
2. Lipid biophysics
3. Folding/unfolding of proteins
4. Multiscale simulation
5. Chromatin, nucleosomes and molecular machines
6. Glycobiophysics
7. Biomolecular self-assembly
8. Photosensory biophysics
9. Structure-function relationships (channels, pumps, exchangers)
10. Live cell imaging
11. Protein-ligand interactions
12. Membrane microdomains and signalling
13. Biological motility and molecular motors
14. Interaction and recognition of DNA
15. Biomaterials and drug delivery
16. Single molecule fluorescence
17. Imaging and spectroscopy
18. Fluorescent proteins
19. Solar energy conversion and photosynthesis
20. Statistical, soft matter and biological physics
21. Condensed colloidal phase in biology
22. Ion channels in channelopathies and cancer
23. RNA world
24. Stem cells

www.ebsa2009.org

biophysics-congress-genova